Properties and distribution of a metallo-β-lactamase (ALI-1) from the fish pathogen Aliivibrio salmonicida LFI1238.
نویسندگان
چکیده
OBJECTIVES To characterize the chromosome-encoded metallo-β-lactamase (MBL) from the psychrophilic, marine fish-pathogenic bacterium Aliivibrio salmonicida LFI1238 and check for the presence of the gene in other Aliivibrio isolates both connected to the fish-farming industry and from the environment. METHODS The MBL gene was cloned and intracellularly expressed in Escherichia coli. Kinetic parameters, NaCl dependence, pH optimum and temperature optimum were determined using purified enzyme. The VIM-2 enzyme from a Pseudomonas aeruginosa hospital isolate was used as a counterpart in comparative analysis. PCRs with degenerate MBL primers were used to screen different A. salmonicida isolates for the presence of the gene. RESULTS A. salmonicida MBL (ALI-1) is an Ambler class B β-lactamase sharing 39% and 29% amino acid identity with IMP-1 and VIM-2, respectively. ALI-1 hydrolysed all β-lactam antibiotics tested, except for the monobactam aztreonam and the penicillin piperacillin. A profound increase in activity was observed when adding NaCl to the assay mixture (60% active without addition of NaCl, increasing to 100% at 0.5 M NaCl). The increase was less noticeable for VIM-2 (100% active at 0.2 M NaCl). ALI-1 appears to be ubiquitous in nature as it is found in Aliivibrio isolates not affected by human activity. CONCLUSIONS This work provides more data for the ever-expanding MBL group of enzymes. These periplasmic enzymes are activated by addition of NaCl, and the marine enzyme is highly salt tolerant and cold active. The observed enzyme properties very likely reflect the conditions that the enzymes face in situ.
منابع مشابه
Characterization of the sialic acid synthase from Aliivibrio salmonicida suggests a novel pathway for bacterial synthesis of 7-O-acetylated sialic acids.
Resolving the enzymatic pathways leading to sialic acids (Sias) in bacteria are vitally important for understanding their roles in pathogenesis and for subsequent development of tools to combat infections. A detailed characterization of the involved enzymes is also essential due to the highly applicable properties of Sias, i.e., as used in a wide range of medical applications and human nutritio...
متن کاملMutT from the fish pathogen Aliivibrio salmonicida is a cold-active nucleotide-pool sanitization enzyme with unexpectedly high thermostability
Upon infection by pathogenic bacteria, production of reactive oxygen species (ROS) is part of the host organism's first line of defence. ROS damage a number of macromolecules, and in order to withstand such a harsh environment, the bacteria need to have well-functioning ROS scavenging and repair systems. Herein, MutT is an important nucleotide-pool sanitization enzyme, which degrades 8-oxo-dGTP...
متن کاملQuantum Mechanical Approach for the Catalytic Mechanism of Dinuclear Zinc Metallo-β-lactamase by Penicillin and Cephalexin: Kinetic and Thermodynamic Points of View
Metallo-β-lactamases (MβL) catalyzing the hydrolytic cleavage of the four-membered β-lactam ring in broad spectrum of antibiotics and therefore inactivating the drug; However, the mechanism of these enzymes is still not well understood. Electronic structure and electronic energy of metallo-β-lactamase active center, two inhibitors of this enzyme including penicillin and cephalexin, and differen...
متن کاملIdentification and Characterization of Metallo-β-Lactamases Producing Pseudomonas aeruginosa Clinical Isolates in University Hospital from Zanjan Province, Iran
Background: Infectious by Pseudomonas aeruginosa has spread worldwide and metallo-beta-lactamases (MBL) are being reported with increasing frequency. The aim of this study was to investigate the antibiotic susceptibility and distribution of blaVIM and blaIMP genes in P. aeruginosa isolates from Zanjan Province of Iran. Methods: A total of 70 P. aeruginosa isolates were identified from patients ...
متن کاملAssociation Between Metallo-β-lactamases and Integrons with Multi-Drug Resistance in Pseudomonas aeruginosa Isolates
Pseudomonas aeruginosa is among the most important pathogens in the nosocomial infections. A genetic mobile element, the integron, is one of the major agents involved in dissemination of multi-drug resistance among gram negative bacteria. During a descriptive study from October 2009 to August 2010, some 130 P. aeruginosa clinical isolates were collected from different wards of three hospitals...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of antimicrobial chemotherapy
دوره 70 3 شماره
صفحات -
تاریخ انتشار 2015